# MA(1) simulation
<- 200
n <- 0.8
theta <- rnorm(n + 1) # ε_0 to ε_n
eps <- numeric(n)
ma_values for(t in 1:n) {
<- eps[t+1] + theta*eps[t] # X_t = ε_t + θε_{t-1}
ma_values[t]
}
<- tsibble(time = 1:n, y = ma_values, index = time)
ma1 # Plot
ggplot(ma1, aes(x = time, y = y)) +
geom_line() +
labs(title = "MA(1) Process", x = "Time", y = "X_t") +
theme_minimal()
Activity4
1. MA(1) Process
The Moving Average of Order 1 (MA(1)) process is defined as:
\[
X_t = \varepsilon_t + \theta \varepsilon_{t-1}
\]
where \(\varepsilon_t\) is white noise with variance \(\sigma^2\).
Key Properties:
- Short Memory: The autocorrelation function (ACF) cuts off after lag 1.
- Variance: \(\gamma(0) = \sigma^2(1 + \theta^2)\).
- Covariance: \(\gamma(1) = \theta \sigma^2\).
Simulation in R:
2. AR(1) Process
The Autoregressive of Order 1 (AR(1)) process is defined as:
\[
X_t = \phi X_{t-1} + \varepsilon_t
\]
where \(\varepsilon_t\) is white noise with variance \(\sigma^2\).
Key Properties:
- Stationarity: Requires \(|\phi| < 1\).
- ACF: Decays exponentially as \(\rho(k) = \phi^k\).
- PACF: Cuts off after lag 1.
Simulation in R:
# AR(1) simulation
<- 200
n <- 0.8
phi <- rnorm(n)
eps <- numeric(n)
ar_values 1] <- eps[1] # X_1 = ε_1
ar_values[for(t in 2:n) {
<- phi*ar_values[t-1] + eps[t]
ar_values[t]
}
<- tsibble(time = 1:n, y = ar_values, index = time)
ar1 # Plot
ggplot(ar1, aes(x = time, y = y)) +
geom_line() +
labs(title = "AR(1) Process", x = "Time", y = "X_t") +
theme_minimal()
3. Random Walk with Drift
The Random Walk with Drift is defined as:
\[
X_t = \delta + X_{t-1} + \varepsilon_t
\]
where \(\varepsilon_t\) is white noise with variance \(\sigma^2\), and \(\delta\) is the drift term.
Key Characteristics:
- Non-Stationarity: Variance grows with time, \(\operatorname{Var}(X_t) = t \sigma^2\).
Simulation in R:
library(tsibble)
library(feasts)
# Random Walk with Drift simulation
<- 100
n <- 0.1
delta <- cumsum(delta + rnorm(n)) # Cumulative sum of (δ + ε_t)
rw_values
<- tsibble(time = 1:n, y = rw_values, index = time)
rw_drift autoplot(rw_drift, y) + labs(title = "Random Walk with Drift") +
theme_minimal()
Lab Activity: More Simulations and Comparisons
Q1: MA(1) Process
Prompt: Simulate and visualize an MA(1) process with parameter θ = 0.9 using tsibble
and autoplot
.
Solution:
Q2: AR(1) Process
Prompt: Simulate and visualize an AR(1) process with parameter \(\phi=0.96\) using tsibble
and autoplot
.
Solution:
Q3: Random Walk & Comparison
Prompt: Create a random walk with drift \((\delta = 0.2)\), then visualize all three processes together.
Solution: