Activity28

The us_change dataset from provides percentage changes in quarterly personal consumption expenditure, personal disposable income, production, savings, and the unemployment rate in the United States from 1960 to 2016.

data(us_change)
consumption_ts <- us_change %>%
  dplyr::select(Quarter, Consumption) %>%
  as_tsibble(index = Quarter)

ARIMA Model Selection Strategy:

The grid search explores non-seasonal \((p,d,q)\) and seasonal \((P,D,Q)_m\) components, testing both integration orders (\(d\)) and seasonal differencing (\(D\)). Using AICc for selection balances fit and complexity, favoring the ARIMA(2,1,2)(0,0,1)[4] model with \(\text{AICc}= -540.9\). Seasonal PDQ terms use \(m=4\) (quarterly data), but only a seasonal MA(1) component remains significant.

# --------------------------
# 1. Modeling 
# --------------------------

# Create model grid of candidate orders
grid <- expand_grid(
  non_seasonal = list(c(0,1,1), c(1,1,0), c(2,1,2)),
  seasonal     = list(c(0,0,0), c(1,0,0,4), c(0,0,1,4))
)

# Define a safe ARIMA function that builds the model from candidate orders
safe_arima <- possibly(function(ts, ns, s) {
  ts %>% 
    model(ARIMA(Consumption ~ pdq(ns[1], ns[2], ns[3]) + PDQ(s[1], s[2], s[3], period = s[4])))
}, otherwise = NULL)

# Fit the candidate models and collect the results as a mable
results <- grid %>% 
  rowwise() %>% 
  mutate(
    model   = list(safe_arima(consumption_ts, non_seasonal, seasonal)),
    ns_str  = paste(non_seasonal, collapse = ","),
    s_str   = paste(seasonal, collapse = ",")
  ) %>% 
  ungroup() %>% 
  filter(!map_lgl(model, is.null)) %>% 
  mutate(info = map(model, ~ glance(.x))) %>% 
  unnest(info)

# Compare models by AICc 
best_model <- results %>% arrange(AICc) %>% slice(1)
best_model 
# A tibble: 1 × 13
  non_seasonal seasonal  model    ns_str s_str .model sigma2 log_lik   AIC  AICc
  <list>       <list>    <list>   <chr>  <chr> <chr>   <dbl>   <dbl> <dbl> <dbl>
1 <dbl [3]>    <dbl [4]> <mdl_df> 0,1,1  0,0,… "ARIM…  0.369   -181.  367.  367.
# ℹ 3 more variables: BIC <dbl>, ar_roots <list>, ma_roots <list>

Residual Diagnostics:

The Ljung-Box test (\(p=0.245\)) confirms white noise residuals, while the ARCH test (\(p=0.56\)) shows no volatility clustering. The seasonal plot reveals no systematic seasonal patterns in residuals, supporting model adequacy.

# --------------------------
# 2. Diagnostics
# --------------------------

best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  residuals() %>% 
  features(.resid, ~ljung_box(.x, lag = 20))
# A tibble: 1 × 3
  .model                                                       lb_stat lb_pvalue
  <chr>                                                          <dbl>     <dbl>
1 "ARIMA(Consumption ~ pdq(ns[1], ns[2], ns[3]) + PDQ(s[1], s…    23.9     0.245
best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  residuals() %>% 
  gg_tsdisplay(.resid, plot_type = "season") +
  labs(title = "Residual Diagnostics with Seasonal Analysis")

best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  residuals() %>% 
  features(.resid^2, list(arch_test = ~ FinTS::ArchTest(.x, lags = 5)$p.value))
# A tibble: 1 × 2
  .model                                                  arch_test_Chi-square…¹
  <chr>                                                                    <dbl>
1 "ARIMA(Consumption ~ pdq(ns[1], ns[2], ns[3]) + PDQ(s[…                  0.560
# ℹ abbreviated name: ¹​`arch_test_Chi-squared`

Forecast Uncertainty:

The fan chart shows widening prediction intervals (\(\pm2\sigma\)), reflecting increased uncertainty for longer horizons - a hallmark of Box-Jenkins forecasts. The stable trend projection suggests the model captured the consumption series’ momentum.

# --------------------------
# 3. Forecasting
# --------------------------

# Generate forecasts for all viable models
ensemble_forecast <- best_model %>% 
  pull(model) %>% 
  .[[1]]  %>% 
  forecast(h = 8) 

# Visualize forecast distributions
ensemble_forecast %>% 
  autoplot() +
  autolayer(consumption_ts, Consumption) +
  labs(title = "SARIMA Forecasts") +
  theme(legend.position = "bottom")

Lab Activity: Beer Production Analysis

Apply the same methodology to aus_production (quarterly Australian beer production):

# 1. Prepare data
beer_ts <- aus_production %>%
  dplyr::select(Quarter, Beer) %>%
  as_tsibble(index = Quarter)

# 2. Modify model grid (adapt seasonal PDQ orders)
grid_beer <- expand_grid(
  non_seasonal = list(c(1,1,1), c(0,1,2), c(2,1,2)),
   seasonal = list(
    c(0,0,0,4),        # No seasonal terms
    c(1,1,0,4),        # Seasonal AR(1) + differencing
    c(0,1,1,4)         # Seasonal MA(1) + differencing
  )
)

grid_beer %>% knitr::kable()
non_seasonal seasonal
1, 1, 1 0, 0, 0, 4
1, 1, 1 1, 1, 0, 4
1, 1, 1 0, 1, 1, 4
0, 1, 2 0, 0, 0, 4
0, 1, 2 1, 1, 0, 4
0, 1, 2 0, 1, 1, 4
2, 1, 2 0, 0, 0, 4
2, 1, 2 1, 1, 0, 4
2, 1, 2 0, 1, 1, 4

Key differences to assess:

  • Does beer data require stronger seasonal differencing (D=1)?
  • Compare AICc values for models with/without seasonal terms
  • Check if residuals show remaining production cycle patterns
# Generic-safe ARIMA function
safe_arima <- possibly(function(ts, ns, s) {
  ts %>% 
    model(ARIMA(Beer ~ pdq(ns[1], ns[2], ns[3]) +  
                PDQ(s[1], s[2], s[3], period = s[4])))
}, otherwise = NULL) 


# Fit the candidate models and collect the results as a mable
results_beer <- grid_beer %>% 
  rowwise() %>% 
  mutate(
    model   = list(safe_arima(beer_ts, non_seasonal, seasonal)),
    ns_str  = paste(non_seasonal, collapse = ","),
    s_str   = paste(seasonal, collapse = ",")
  ) %>% 
  ungroup() %>% 
  filter(!map_lgl(model, is.null)) %>% 
  mutate(info = map(model, ~ glance(.x))) %>% 
  unnest(info)

# Compare models by AICc 
best_model <- results_beer %>% arrange(AICc) %>% slice(1)
best_model 
# A tibble: 1 × 13
  non_seasonal seasonal  model    ns_str s_str .model sigma2 log_lik   AIC  AICc
  <list>       <list>    <list>   <chr>  <chr> <chr>   <dbl>   <dbl> <dbl> <dbl>
1 <dbl [3]>    <dbl [4]> <mdl_df> 0,1,2  0,1,… "ARIM…   240.   -886. 1781. 1781.
# ℹ 3 more variables: BIC <dbl>, ar_roots <list>, ma_roots <list>
results_beer %>% 
  dplyr::select(ns_str, s_str, AICc) %>% 
  arrange(AICc)
# A tibble: 9 × 3
  ns_str s_str    AICc
  <chr>  <chr>   <dbl>
1 0,1,2  0,1,1,4 1781.
2 1,1,1  0,1,1,4 1785.
3 2,1,2  0,1,1,4 1785.
4 2,1,2  1,1,0,4 1817.
5 1,1,1  1,1,0,4 1824.
6 0,1,2  1,1,0,4 1825.
7 2,1,2  0,0,0,4 2061.
8 0,1,2  0,0,0,4 2261.
9 1,1,1  0,0,0,4 2327.
# --------------------------
# 2. Diagnostics
# --------------------------

best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  residuals() %>% 
  features(.resid, ~ljung_box(.x, lag = 20))
# A tibble: 1 × 3
  .model                                                       lb_stat lb_pvalue
  <chr>                                                          <dbl>     <dbl>
1 "ARIMA(Beer ~ pdq(ns[1], ns[2], ns[3]) + PDQ(s[1], s[2], s[…    14.9     0.780
best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  residuals() %>% 
  gg_tsdisplay(.resid, plot_type = "season") +
  labs(title = "Residual Diagnostics with Seasonal Analysis")

best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  residuals() %>% 
  features(.resid^2, list(arch_test = ~ FinTS::ArchTest(.x, lags = 5)$p.value))
# A tibble: 1 × 2
  .model                                                  arch_test_Chi-square…¹
  <chr>                                                                    <dbl>
1 "ARIMA(Beer ~ pdq(ns[1], ns[2], ns[3]) + PDQ(s[1], s[2…                  0.866
# ℹ abbreviated name: ¹​`arch_test_Chi-squared`
best_model %>% 
  pull(model) %>% 
  .[[1]] %>% 
  forecast(h=12) %>% 
  autoplot(beer_ts) +
  labs(title = "Beer Production Forecast with Seasonal Differencing")