Activity29
Introduction to State-space Models
2. Retail Inventory Analysis
Interpretation:
- Level: Long-term employment capacity
- Trend: Damped growth pattern (Ad = additive damped)
- Noise: Irregular fluctuations (\(v_t\) in our equations)
State Transition Equations:
Level:
\[ l_t = l_{t-1} + \phi b_{t-1} + \alpha \epsilon_t \quad \Rightarrow \quad l_t = l_{t-1} + 0.98b_{t-1} + 0.9999\epsilon_t \]
Damped Trend:
\[ b_t = \phi b_{t-1} + \beta \epsilon_t \quad \Rightarrow \quad b_t = 0.98b_{t-1} + 0.0162\epsilon_t \]
Observation Equation:
\[ y_t = l_{t-1} + \phi b_{t-1} + \epsilon_t \quad \Rightarrow \quad y_t = l_{t-1} + 0.98b_{t-1} + \epsilon_t \]
3. Activity: Employment Dynamics
Step 1 - Model Setup
Step 2 - Extract States
Step 3 - Equation Translation
Based on the ETS(A,Ad,A)
model output with parameters:
- α = 0.6488 (level smoothing)
- β = 0.1251 (trend smoothing)
- φ = 0.9794 (damping factor)
- γ = 0.3298 (seasonal smoothing)
State Transition Equations
Level:
\(l_t = l_{t-1} + \phi b_{t-1} + \alpha \epsilon_t\)
\(\Rightarrow l_t = l_{t-1} + 0.9794b_{t-1} + 0.6488\epsilon_t\)Damped Trend:
\(b_t = \phi b_{t-1} + \beta \epsilon_t'\)
\(\Rightarrow b_t = 0.9794b_{t-1} + 0.1251\epsilon_t'\)Seasonal Component:
\(s_t = s_{t-m} + \gamma \epsilon_t''\)
\(\Rightarrow s_t = s_{t-12} + 0.3298\epsilon_t''\) (monthly seasonality: \(m = 12\))
Observation Equation
\(y_t = l_{t-1} + \phi b_{t-1} + s_{t-m} + v_t\)
\(\Rightarrow y_t = l_{t-1} + 0.9794b_{t-1} + s_{t-12} + v_t\)
4. Activity
Problem 1: Fit damped trend model to US_employment
Problem 2: Perform a residual diagnostics vs ARIMA